
Changes to SALT/UCMDs from V13.1 to V13.2

General changes

Variables can now be saved in APL or XML format which is now the default.

⎕Se.SALT.Save and Snap now accept –format= as a switch to signify if XML or APL should be used

when saving a variable. See]save below for details.

⎕SE.SALT.List can now list all files, not only .dyalog files. It can also list files with a specific

extension. To use that feature use the –extension= switch. See]list below for details.

⎕SE.SALT.Explore has been renamed Open and opens any file. Its switch –use has been

renamed -with. Files without an extension are deemed to be SALT files (extension .dyalog)

Open will also FTIE DCF files or NTIE a file if –with=apl.

Two new settings have been introduced:

1. Debug this allows a developer to store permanently the debugging level.

2. Varfmt this allows to store permanently the way variables are saved. Allowed values: APL

and XML.

 In APL mode variables are saved as an executable expression. There may be a limit

problem when bringing back a variable as execute is used to recreate it and has

limitations on the size of the number of tokens in a string.

In XML mode (now the default) variables are saved using an XML format. There are

no know limits in this mode and it is preferred.

As usual]settings will report the current settings.

Parsing rules

No change

User Commands changes

]CPUtime

This command now accepts switch –compare to compare expressions using D-fn cmpx in

workspace dfns.

]INX

This command can now load NARS2000 workspaces. Simply specify the name of the source file as

argument.

]LIST

This command is now able to list ALL files in a folder or files with a specific extension.

To list files with a specific extension (e.g. xyz) use –extension=xyz

To list all files use –extension=* or –extension (no value).

Note that listing all files behaves differently in the sense that files representing versions are shown

and that all extensions are shown. For example:

]NAMESLIKE

It now accepts switch -noclass to remove the class number after the name.

]SAVE

Save accepts a new switch –format to signify “save variable using specific format”.

]save Varx \loca\tion -format=xml

Will save a variable in XML format.

The choices are APL and XML.

The general setting varfmt can be set to APL or XML. The default is XML. If you want to use APL you

can specify it by using –format=apl (or APL)

After a variable as been saved in a specific format (APL or XML) SALT will remember it and

subsequent saving of the same variable will keep the same setting unless specifically changed.

]SETTINGS

Two new settings: debug and varfmt.

Debug can be an integer ≥0, 0 meaning “do not debug and report error in the calling environment”

and >0 meaning “stop on error” as previously. The difference now is that you can save that setting

permanently. Note that you can also set this permanently with]udebug by using the switch

–permanent as in

]udebug ON –permanent

Varfmt is a setting that allows you to save variables in XML (the default) or APL format.

By setting this (possibly permanently) you can avoid having to set –format with]save and]snap.

Because the output may contain APL (Unicode) characters, it is still encoded in UTF-8.

]SNAP

Snap accepts a new switch –format to signify “save variables using XML or APL format”.

]snap \tmp -format=xml

will save all non-scripted variables in XML format. See]SAVE above for more details.

Snap also accepts the new switch –∆⍙ to specify the characters to use in filenames for names with

∆ or ⍙ in them. For example, the object E⍙mC∆2 would normally be saved under the filename

e=mc^2.dyalog but if this would cause a problem in your environment you can change it to other

characters. For example, to change the filename to be e&mc!2.dyalog you would specify –∆⍙=&!

on the command line.

]UDEBUG

Now accepts –permanent to make the setting permanent across sessions.

]UNEW

Has been modified and should look a bit better.

]UUPDATE

This command now updates your version of SALT or UCMDs. The default argument is SALT.

If UCMD is used instead it will update your user commands only.

]XREF

This command should now produce a friendlier looking output.

New commands

]AEDIT, group Tools

This command will allow you to edit a variable containing mixed enclosures using David Liebtag’s

array editor.

Ex:

 arr←(2 3⍴1 2 3 4)/¨⍪¨⍳2 3

]aedit arr

]COLLECT, group tools

This command will collect all files with a specific pattern (the argument) into a single file.

This is useful when files have been split (see]SPLIT) and need to be reassembled.

Switches

–newname= allows you to select a new name

–erase will erase the file if it exists before attempting to create it.

Ex:

]collect \tmp\myfile.zip -erase -newname=\temp\projectx.zip

All files starting with \tmp\myfile. zip and followed by 001, 002 ,003, etc. will be merged into a single

file named \temp\projectx.zip

]DEFS, group wsutils

This command reports the definition of all single line D-fns. An argument selects those names only.

Ex:

]defs

 at←{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}

 derv←{(⍳⍵),¨box⊃⍵*÷2}{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}

 pars←⊃∘(+.×/)

 rcb←{(⍳⍵),¨box⊃⍵*÷2}

]defs at derv

 at←{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}

 derv←{(⍳⍵),¨box⊃⍵*÷2}{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}

This allows you to grab the definition from the session and modify it on the fly.

]FINDREFS, group wsutils

This command will follow nested references in the workspace until all references are found.

Switches:

-root= Namespace (default=#) to start from

-loops Report reference loops

-aliases List all aliases for each ref found

-nolist Do not list namespaces (useful with -loop)

]FTO64, group tools

This command will transform all 32b files into 64b. It takes a folder as argument.

Switches:

-recursive to also act on sub-folders

-list to only report the files that would be modified

-verbose to supply details of the process

-backup= to save the original under the same name+backup string

Ex:

]fto64 \big\project -recursive -verbose -backup=.32
* <C:\big\project\132u64b.DCF> is already 64b
*** <C:\big\project\to\x1.DCF> is tied
…
<C:\big\project\to\x2.DCF> made into 64b format and backed up to
<C:\big\project\to\x2.DCF.32>
27 files modified

]SPLIT, group tools

This command allows you to split a file into several smaller files. This can be handy when

transmitting files over an iffy network. If a file transmission fails the failure is limited to the smaller

file which can be retransmitted without having to retransmit the whole original file.

By default the file is split into 10 equal sections. Switch -n= allows you to select another number.

If that number is followed by either M or G it is assumed to be the desired size for each section.

Ex:

]split \projectx\big.zip –n=2M

Each section will have 2E6 bytes in size, each file will have the name \projectx\big.zip001, …002, etc.

Note that the number of files produced cannot exceed 999.

]UREFRESH, group Spice

This command refreshes all SALTed objects by reloading the latest version. This may happen if you

)LOAD a workspace whose SALTed objects have been updated since the workspace was saved.

-noprompt skips the confirmation

]WSDOC, group tools

This command will list functions, variables and refs in the workspace. It will list each item separately,

possibly to file. Arguments are objects to list only (default all objects).

Switches are:

-items= the items to list, can only be one of: wsid fns vars obs fns/ vars/ obs/ salt (a "/" after

the item means "do not expand")

-file= output to file mentioned. If ⍵ is given the actual ws name will be used.

-noprompt do not ask me if file exists and overwrite it

-pw= use this width to fold items

-xref will produce a cross reference of objects found in the code

Dyalog 2012

